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ABSTRACT 

4rovclcnts i n  the opcn-:ircuit voltage of 
0.1 obra a i l l c m  aolar  c e l l a  have k e n  achieved 
wim a uitbtep di f fus ion  technique. 
a i  details are given a l m g  v i t h  the n r u l t r  of an 
-lysis t ha t  indicate t h a t  -lous behaviors of 
the electrm d i l i t y  In the cell b u e  lidts a t t a in -  
mt of hi@er volu ;ea. 
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Ihc lle8urrb Center h u  been ectg.sed in 
a e f f o r t  t o  ident i fy  the rdtanisma l imiting the 
open-circuit voltage Wac) in 0.1 b a .  p-base 
s o l a r  cel la .  Theoretical  estiutcs predic t  t h a t  
voltages I n  the range 0.680 < V, C 0.700 vo l t s  are 
possible. 
these vo:tagu were unsuccessful. however, the high- 
est voltages being about 610 vol ts .  
e r a l  ra ther  unorthodox approaches have succeeded i n  
produciag s ign i f i can t  voltage increases.  
i l l u s t r a t e s  the present status of the v a r i a u  c f -  

and ccapare the voltages of ese  cells a t  a rb i t r a ry  
current density of 100 d l 4  3, we see that the high- 
est voltage (0.648 V) was achieved by the University 
of F lOr id~ '8  ep i t ax ia l ly  deposited, high low emitter 
(€I=) cell (1). Voltages i n  the 0.637 to 0.640 v o l t  
rmge were obtained by the Spi re  Corporation w i t h  
t h e i r  ion-implanted emttter (IIE) cell (2). by NASA- 
Leuis using a u l t i s t e p  d i f fus ion  W D )  technique, 
and by the University of New South Wales with t h e i r  

cell (3). These voltages represent s s i g n i f i -  
cant improvement over the 0.610 v o l t  level  t h a t  
u r k e d  the best e f f o r t  several  year8 ago. A t  l e s a t  
i n  the case of the  IIvia WD cell, however, these 
experimental advances have preceded theoret ical  
understmding in t ha t  we do not have a deta i led  
knowledge of the mechanisms responsible for the in- 
c r e u e d  voltages. 
these processes a re  t o  be o p t i d r e d  and the m a x i m  
voltages realized. 
therefore,  is t o  d a c r i b e  the techniques uaed i n  the 
-is program and t o  present the r e su l t s  of M ef-  
f o r t  to ident i fy  the voltage l imit ing mechanisms 
operating in the -is WD c e l l . .  
s imi la r  e f f o r t  t o  determine the voltage l imit ing 
mechanisms i n  the HIE c e l l  and the I I E  c e l l  w i l l  
a lao be presented. 

I n i t i a l  a t t c q t s  to produce c e l l s  with 

Recently sev- 

Figure 1 

fo r t s .  I f  vc a s S W  ideal  diode chJrJCteKistiC8 

Such knwledge is  necessary i f  

m e  purpose of t h i s  paper, 

The r e su l t s  of a 

It should be noted tha t  through~~t the remain- 
der of the p~per. t he  Voc vi11 be defined as the 
voltage obtained under i l l d n a t i o n  su f f i c i en t  to 
produce 8 Current density Of 25 dd. 

E X P E R m A L  

The -is m l t i s t e p  fabr ica t ion  schedule is 
given in Table I along w i t h  a list of the best con- 
ditions found t o  date.  Ihe schedule consis ts  of 
three steps, a11 of which have been found t o  be 
necessary. me f i r s t  s t ep  is a high temperature 
(950° C) long tlmc (t > G  br)  diffusion. 
~ r y  di f fus ion  is Lollwed by m acid-etch 
( lRF:2m3:uuc)  removal of the emitter surface 
such t h a t  the f i n a l  sheet res i s tance  is i n  the 10 
t o  12 ohdo range. The etching step is then fol-  
1-d by 8 short ,  1W tt3Upl?Kature secondary diffu-  
sion. 
microwters .  
oxide d i f fus ion  sources w e r e  used. I - V  data were 
obtained vith a xenon X-25 aolar  s i m l a t o r .  Diffu- 
sion lengths were measured using an X-ray technique 
and spec t r a l  response da ta  w e r e  taken w i t h  8 nine 
point narrow band f i l t e r  wheel. 

This pri-  

F ina l  junction depths range from 1 t o  4 
Both gaseous (PH3) and spin-on doped 

DETEREIINATION OF TRE VOLTAGE LLMITINC MXHANISEI 

As s t a t e d  above, the -is S D  schedule has 
not been completely optimized. Consider, for  e- 
pie ,  the times of primary diffusion. As shown i n  
Fig. 2, we have found a direct cor re la t ion  between 
the primary d i f fus ion  t ime  and the open-circuit  
voltage. As can be seen, the highest  voltage was 
obtained f o r  the longest d i f fus ion  time attempted. 
These da ta  suggest t h a t  the way t o  increased vol t -  
age is through fur ther  increases in di f fus ion  time. 
A. the d i f fus ion  t i m e  approaches 100 hours, however, 
not only does c e l l  fabr ica t ion  become unacceptably 
cumbersome, but cur ren t  output is a l s o  reduced due 
t o  the increases in the junction depth. It was 
therefore decided t o  inves t iga te  the u1eCh8nfSm~ in- 
volved with the voltage itacteases a t  hand. Ident i -  
f i ca t ion  of the cont ro l l ing  mechanism would hope- 
f u l l y  enable achievement of fur ther  voltage in-  
creases i n  shallower junction c e l l s .  
der of the paper. therefore.  we w i l l  describe OUK 
e f f o r t s  t o  determine the voltage cont ro l l ing  compo- 
nent of the device s s tu r s t ion  current,  snd to iden- 
t i f y  the c r i t i c a l  parameter i n  tha t  component t h a t  
l imits  fur ther  voltsge increaser. 

In  the remain- 



Ident i f ica t ion  of the Voltage Limiting Saturat ion 
Current Component 

The open-circuit vol tage as  defined i n  the 
introduct ion is detemined by the value of the de- 
vice s a t u r a t i o n  current  density. &,. Io has, i n  
general, three components: a base canponent, Ion. 
QI emitter carpoaent. &,E, and a deplet ion region 
component, I,DR. Ihe f i r s t  s t e p  i n  the search f o r  
the vol tage l imi t ing  me&anism is to determine the 
r e l a t i v e  magnitudes of each of these canponents. 
Since these cells a l l  exhib i t  idea l  diode charac- 
teristics i n  the voltage range near  Voc, ue know 
that &,DR is negl igibly s-11. The r e l a t i v e  de- 
gree of  cont ro l  exercised by the  remaining t w o  com- 
ponents can be determined by malyz ing  the r e s u l t s  
of come 1 E(eV e lec t ron  i r r a d i a t i o n  experiments. In 
these experiments, a number of typical  cells were 
i r r a d i a t e d  i n  s teps  to fluences of 1 ~ 1 0 ~ ~ .  l X l O l 3 ,  
3x1013, 1~1014, a l 0 1 4 ,  and lxiols e/&. A t  each 
fluence level  the d i f fus ion  lengths, the current- 
voltage charac te r i s t ics ,  and the  s p e c t r a l  responses 
were measured. Figure 3 i l l u s t r a t e s  the  behavior 
of the red (0.9 um) and the blue (0.5 unt) monochro- 
matic s p e c t r a l  responses when a ce l l  which has re- 
ceived a 4 hour 950' C primary d i f fus ion  is sub- 
jected t o  1 MeV e lec t ron  i r r a d i a t i o n .  As can be 
seen, the red response is severely degraded t y  the  
i r rad ia t ion ,  while the blue response is essent ia l ly  
unaffected. I f  we assumed t h a t  t h i s  invsrience of 
the blue response with fluence ind ica tes  t h a t  I,E 
is not  affected by the i r r a d i a t i c n ,  the task of 
separat ing base and emitter e f f e c t s  is grea t ly  s i m -  
p l i f  fed. 

In Fig. 6 ,  for  example, the  Voc of t h i s  sane 
cell is plot ted as a function of the base d i f fus ion  
length. Since the magnitude of the decrease i n  the 
open-circuit voltage with decreasing base d i f fus ion  
length depends on the value of 
ab le  t o  determine 
t ing  the appropriate theore t ica l  expression to  the 
da ta  i n  Fig. 4 .  l%e expression f o r  Voc is given 

IoE, we should be 
I,E (assumed constant) by f i t -  

by 

+ coth <yl] L 

where 

Is, is the shor t -c i rcu i t  current  densi ty ,  T i s  
the  absolute temperature, L i s  the base d i f fus ion  
length, n i  is the i n t r i n s i c  c a r r i e r  concentration, 
D i s  the e lec t ron  d i f f u s i v i t y ,  NA is the boron 
concentration a t  the base deplet ion region edge, 
d is the c e l l  thickness, k is BOlttQann'S Con- 
s t a n t ,  q is  the  e lec t ronic  charge, and an ohmic 
r e a r  contact  is assumed. 

A f i t  of Eq. (1) t o  the da ta  i n  Fig. 4, using 
 io^ and P as  adjustable parameter, i s  shown as 
the  s o l i d  curve i n  t h a t  f igure.  The res* l l t s  of the 
f i t  ind ica te  t h a t  the device sa tura t ion  current be- 
fore  i r r a d i a t i o n  was composed of a 68% contribution 

from the base and a 322 contr ibut ion from the 
emit ter .  

'Ihese r e s u l t s  and the r e s u l t s  the same analy- 
sis perfomed on cells diffused a t  tLe same teinpera- 
tu re  but f o r  16, 11, and 65 hours a r e  swmarized i n  
Fig. 5 ,  where the device sa tura t ion  current  and 
its components a r e  plot ted against  primary d i f f u -  
eion time. I n  order t o  compare the var ia t ions  i n  
Io and i t s  components independently of d i f fus ion  
length d i f fe rences ,  the da ta  1.1 t h i s  f igure  were 
obtained from Eq. (1) using the experimentally de- 
r ived values of I,E and A, and requir ing the  
d i f fus ion  length -0 be 220 micrometers i n  a11 cases. 
Thus. any var ia t ions  i n  Io must be ascribed t o  
some parameter o ther  than L. 

Measurements s imi la r  t o  those made on the  
L e w i s  PLSD c e l l s  were performed on a limited a w l -  
ing of 11E and HIE c e l l s  i n  an attempt t o  determine 
the voltage cont ro l l ing  components of Io i n  each 
of  these cases. 
i r r a d i a t i o n  data f o r  the ion-implanted c e l l s  indi-  
cated t h a t  the  vol tage i n  t h i s  type of cell ,  as i n  
the  Levis cell, i s  control led by 1,~. 'Ihe r e s u l t s  
f o r  one 11E c e l l  a r e  p lo t ted  i n  Fig. 5 .  

An analys is  of 1 MeV e lec t ron  

An inspection of Fig. 5 ind ica tes  tha t  i n  a l l  
cases,  io^ i s  the dominant component. 1,~. while 
contr ibut ing to  the t o t a l  sa tura t ion  current ,  ap- 
pears t o  remain constant with d i f fus ion  t i m e .  The 
vol tage increases observed with increase i n  d i f fu-  
s ion  t i m e  can therefore  be a t t r i b u t e d  t o  decreases 
is  io^: 

Because o f  the complexity of the HIE cell  (1). 
an analysis  s imi la r  t o  t h a t  performed above is not 
possible. Since both the blue and the red s p e c t r a l  
response components w e r e  found t o  be degraded by 
e lec t ron  i r rad ia t ion ,  an assumption of constant  
 io^ cannot be made. The d i f fus ion  lengths in both 
regions a r e  apparently a function of fluence. 
W i l e  a quant i ta t ive  ana lys i s  of these c e l l s  would 
be d i f f i c u l t ,  some q u a l i t a t i v e  conclusions can be 
drawn. Figure 7 show the experimental Voc vs .  
fluence da ta  f o r  the H I E  c e l l .  Superimprosed on 
these data i s  a curve i l l u s t r a t i n g  what would be 
expected i f  the voltage of t h i s  ce l l  were con- 
t r o l l e d  only by the rad ia t ion  induced decrease i n  
the base d i f fus ion  length. As can be seen, the 
measured decrease i n  the base diffusion length can 
account f o r  only a small f rac t ion  of the observed 
voltage drop. We can thus conclude &at  the vol t -  
age is control led t o  a high degree by the emitter 
component of the  device sa tura t ion  current .  

Further evidence of base cnntrol  i n  the B D  
cells is obtained from the relat ionship between the  
Voc and spectra? response. Figure 6 shows the 
re la t ionship  between the Voc and the monochro- 
matic 0 . 5  and 0.9 urn spec t ra l  responses for  a large 
number of c e l l s  fabr icated with 4 hours, 950° C 
primary diffusions.  The assumption made here is 
tha t  the parameters a f fec t ing  the current  output 
from a given region of the c e l l  ( i . e . ,  the  base o r  
the emi t te r )  w i l l  a l s o  a f f e c t  the value of the 
sa tura t ion  current  i n  t h a t  region. merefore ,  i f  
 io^ were control l ing the voltage, we would expect 
a pos i t ive  cor re la t ion  between the base current  

L 



(0.9 response) and the Voc. me f a c t  t h a t  
Pig. 6 shows such a cor re la t ion  supports the previ- 
ous base contra1 conclurioaa. me lack of  correla- 
tion between the  voltage and the emitter current  
(0.5 un response) is a180 consis tent  with bare con- 
trol. 

To swanarise, the preceding da ta  suggest 
s t rongly t h a t  the open-circuit voltages both in the 
-is B D  cells and the Spi re  11E cells are con- 
t r o l l e d  by the base component of the device sa tura-  
t i o n  current .  I n  the Flor ida HIE cells, on the 
other hand, the emi t te r  appears t o  be  control l ing.  

Determination of the C r i t i c a l  Voltage Limiting 
Parameter 

The previous r e s u l t s  s t rongly  ind ica te  t h a t  
 io^ controls  the Voc i n  the Levis t S D  cells. 
ltte next s t e p  is t o  ident i fy  the  parameter i n  Iog 
t h a t  is influenced by the d i f fus ion  time i n  such a 
way as to produce higher  voltages as the di f fus ion  
tiue is increased. 

I,B cm be expressed as 

(3) 

In  an attempt to isolate the vol tage cont ro l l ing  
parameter i n  Eq. (3) ,  a number of cells were se- 
lected t h a t  had widely d i f f e r e n t  open-circuit vo l t -  
ages but near ly  ident ica l  base d i f fus ion  lengths, 
thicknesses, and r e a r  surface treatments. The pr i -  
mary d i f fus ion  times f o r  these cells were 4, 16, 
and 41 hours. It is reasoned t h a t ,  s ince  a l l  o ther  
parameters were ident ica l ,  the vol tage differences 
between these cells mst be due t o  differences i n  
either the base dopant (boron) concentration and/or 
prof i le ,  o r  the  base minority c a r r i e r  d i f fus iv i ty .  

fie e l e c t r i c a l l y  ac t ive  boron concentration 
prof i les  on the base s i d e  of the  junr t ion  can be 
obtained by measuring the phosphorus concentration 
and subtract ing i t  from the pre-diffusion boron 
concentration which is assumed constant s ince a l l  
these cells were fabricated from the same ingot .  
The phosphorus concentrations were determined 
through SIPS measurements. 
in Fig. 8. As can be seen, the p r o f i l e s  a r e  un- 
expectedly s imi la r  i n  the v i c i n i t y  of the junction. 
With the assumption t h a t  this s i m i l a r i t y  extends 
beyond the junct ion i n t o  the bsse region, we f ind  
tha t  t h e  calculated boron prof i les  in t h a t  layer  
a re  ident ica l .  

The r e s u l t s  a r e  s h a m  

Y e  can conclude, therefore ,  tha t  because the 
ne t  boron prof i les ,  the  base d i f fus ion  lengths, the 
thicknesses, and the r e a r  surface recombination 
v e l o c i t i e s  of these cells a r e  ident ica l ,  t h e i r  ob- 
served voltage differences must be due t o  d i f f e r -  
ences i n  the remaining var iab le  (i.e.,  the base re- 
gion minority c a r r i e r  d i f fus iv i ty) .  To explain the 
observed vol tage increases ,  one would have t o  in-  
voke a reduction in the d i f f u s i v i t y  as the  d i f fu-  
s ion time is increased. 

me v a l i d i t y  of these conclusions c w l d  be 
tes ted  through a measurement of the base d i f fus iv-  
i t y  of these three c e l l s .  Theoret ical ly  this could 
be done by puking independent measuremnts of the  
d i f fus ion  leagth and the l i fe t ime and employing the 
w e l l  known r e l a t i o n ,  L = DT, h e r e  T is the base 
minority c a r r i e r  l i fe t ime.  Unfortunately. attempts 
t o  measure T i n  the above cells using an open- 
c i r c u i t  voltage decay (OCVD) technique vere  UMUC- 
cess fu l  because of  mnbiquities i n  the in te rpre ta -  
t i o n  of the decay cuwes.  We can, however. present  
s u m  auxi l ia ry  evidence t o  a t t e s t  t o  the exis tence 
of la rge  Changes i n  minority c a r r i e r  d i f f u s i v i t y  
w i t h  d i f fus ion  t i m e .  

The da ta  presented i n  Table I1 vere obtained 
a t  Lewis several  years  ago during a study of shal-  
lov junction, 10 ohm-cm devices. It can be seen 
t h a t  as  the d i f fus ion  time v8s increased, the d i f -  
fusion lengths decreased s igni f icant ly .  However. 
contrary to  what would be expected, a s  the  d i f fu-  
sion length decreased, the open-circuit vol tage in-  
creased. To invest igate  the cause of t h i s  s t range 
behavior, the l i fe t imes  of these cells w e r e  mea- 
sured using an OCVD technique, and the d i f f u s i v i -  
ties calculated using Eq. (2). The r e s u l t s ,  shown 
i n  Table 11, ind ica te  a l a rge  drop i n  the value of 
D as  the d i f fus ion  time was increased from 30 min- 
u t e s  to 2 hours. These var ia t ions  i n  d i f f u s i v i t y  
with d i f fus ion  t i m e  are very s imi la r  t o  what has 
been observed i n  the present FED cells. It appears 
reasonable, therefore ,  on +e basis  of t h e  above 
da ts ,  t o  ascr ibe the voltage l imi t ing  r o l e  i n  Lewis 
l S D  cells t o  the e lec t ron  d i f f u s i v i t y  i n  the ce l l  
base. 

DISCUSSION 

The preceding analysis  suggests  t h a t  f o r  s h o r t  
primary diffusions the e rec t ron  d i f f u s i v i t y  i n  the  
base of  an !BD cell i s  anomalously high and, as  the 
d i f fus ion  time is lengthened, the 4 i i f u s i v i t y  de- 
creases. Calculated mobil i ty  values f o r  the  three 
c e l l s  i n  Fig. 8, f o r  instance,  a r e  2170, 1490, and 
1242 cmZ/V sec f o r  the 4, 16, and 41 hour diffused 
cells, respect ively.  'Ihese values a r e  considerably 
higher than the 600 cm2/V sec value expected for  
0.1 ohm-cm mater ia l .  
t h i s  behavior is based upon p i e z o r e s i s t i v i t y  e f -  
f e c t s  (i.e., on the  e f f e c t  of d i f fus ion  induc6.d 
s t r e s s e s  on the  d i f fus iv i ty) .  

One possible  explanation f o r  

It is well  known t h a t  the  mobility, u, i n  the 
s i l i c o n  l a t t i c a  ( re la ted  t o  the d i f f u s i v i t y  through 
the r e l a t i o n  D = kQ/q) is a function of mechani- 
c a l  s t r e s s e s  applied t o  the c r y s t a l  (4). It is 
a l s o  known tha t  the d i f fus ion  of a high concentra- 
t i o n  of phosphorus i n t o  the s i l i c o n  l a t t i c e  pro- 
duces large stresses in the  l a t t i c e  (5). It has 
been s h a m  t h a t  these sLresses e x i s t  not only i n  
the diffused region, bu t  extend for  considerable 
dis tances  el00 0) i n t o  the ce l l  base a5 evidenced 
by the d i s t r i b u t i o n  of d i f fus ion  induced dis loca-  
t ions  (6,7). It is suggested t h a t  the anomalous 
mobility behavior a r i s e s  from the ac t ion  of these 
stresses. 

The composition of the stress f i e l d s  i n  the  
Since the d i f fus ing  base requires some comment. 
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apccies are atomically smaller than the hos t  l a t -  
tice at-, t he  diffused region of the c r y s t a l  
tenda to contract .  
cent regions of the l a t t i c e  under coapressive 
s t r eas .  
8ion is hydros ta t ic ,  the atreate8 in the bme a r e  
ea ren t i a l ly  two diawluional. ex i s t ing  only i n  
d i r ec t iop .  p a r a l l e l  t o  the d i f fus ion  front .  Fur- 
themom,  aa f a r  as the  e l e c t r i c a l  charac te r i s t ica  
of the cell a r e  concerned, the important mobility 
c q m u c r t  La t h a t  coqonent  perpendicular t o  the 
junction and thus transverse t o  t h i s  compressive 

a i r  contraction puts the adja- 

Uhile the contraction i n  the diffuaed rt- 

6trC.S f i e ld .  

Fortunately there is aome information i n  the 
l i t e r a t u r e  describing the va r i a t ion  of the trans- 
verse cooqwnent of the e lec t ron  mobili ty i n  s i l i c o n  
a8 a function of a one-dimensional caupressive 
stress (8). Extrapolation of these da ta  t o  the 
roam t e q e r a t u r e  f r ac tu re  s t r e s s  fo r  s i l i c o n  (9) 
indicates  t h a t  mobili ty values as high a s  2500cm2/V 
aec should be possible.  On the bas i s  of these data ,  
then, it is  t e q t i n g  t o  speculate t ha t  the anarm- 
l o w l y  high values of mobility in the shor t  diffu-  
ai011 time c e l l s  a r e  due t o  high, diffusion-induced 
l a t t i c e  stresses i n  the base region. 
t he r  speculated t h a t  these stresses a r e  relieved 
s e a t  as the d i f fus ion  t i m e  is increased, thus 
l w e r i n g  the mobili ty and providing increased vol t -  
qes. According t o  t h i s  reasoning, the grea te r  the 
l a t t i c e  disturbances i n  the base region the lower 
the voltage from tha t  c e l l .  

It can be fur-  

In addition t o  the above, there is  another 
piece of evidence t o  indicate  tha t  the high vol t -  
ages achieved i n  these c e l l s  a r e  associated with 
improvements i n  the l a t t i c e  perfection of the base 
region. 
me of which was not acid etched between diffusions.  
The photon degradation phenoaenon (10) was then 
used as a diagnostic tool t o  de tec t  the presence or 
absence cf l a t t i c e  damage i n  the base as a function 
of the presence o r  absence of the acid etching step. 
The results indicated tha t  emitter etching not only 
renmres the highly damaged regions near the emitter 
surface,  but t ha t  it a l so  removes l a t t i c e  damage 
from the base region. 

Two groups of S D  c e l l s  vere fabricated,  

It can be concluded, therefore,  t ha t  the vol t -  
age cont ro l l ing  base region i n  these c e l l s  is 
s t rongly  affected by &he processing s t eps  used t o  
fabr icate  the emit ter .  

S m Y  

The results of t h i s  study can be summarized as 
f 01 lows : 

1. The open-circuit  voltages of the Lewis  PLSD 
c e l l  and the Spire 11E c e l l  are controlled by the 
base component of the device sa tura t ion  current,  
whereas the voltage of the Florida HIE c e l l  is con- 
t ro l l ed  by the emitter component. 

2 .  The c r i t i c a l  voltage l imiting parameter i n  
the Levis t S D  c e l l  appears t o  be the e lec t ron  
mobility i n  the c e l l  base. 

3. Qualitative evidence suggests t ha t  the 
anomrlous behavior of the base mobili ty may be ex- 
plained i n  t e rn  of t he  p iczoraa is t ive  e f f e c t s  of 
stress f i e l d s  ex i s t ing  i n  the base due t o  the pres- 
ence of large concentrations of d i f fusant  a tom i n  
1i.e emitter.  
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TABLE I. - W E  IEVIS lLSD FABRICATION SQlEDuLE 

1. Primary dlffu6i01l 

surface concentration . . . . . .  I X I O ~ ~  a - 3  
Taperatwe . . . . . . . . . . . . .  950' C 
T h e  . . . . . . . . . . . . . . . .  X 5 b r  

2. Emitter etch 

Sheet reairtrace . . . . . . . .  10-12 ohm/ 

3. Secondary diffuaiom 

surface concentration . . . . .  -2~1020  an-3 
Tcaperature . . . . . . . . . . . . .  750' C 
Time . . . . . . . . . . . . . . . .  15min 

TABIE 11. - l l i E  EFFECT OF DIFFUSION TIM3 

ON MNOBIlY CARBIER DIF'FUSIVITY 

Diffusioa V0c25, 
conditions, V 

min 

750 - 30 0.523 120 2.0 72.0 
750 - 60 .524 7 0  2 .0  24.5 
750 - 120 .527 36 2.3 5.6 

(.)x-ray technique. 
@)OCVD technique. 
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Figure 1. - Comparison of voltage improvements in 
0.1 ohm-cm silicon cells. 
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Figure 2. - Open-circuit as a function of pri- 
mary diffusion time. 
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Figure 3. - Effect of 1 MeV electron irradi- 
ation on red (0.9 ~1 and blue (0.5 m) 
spectral responses. 
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Figure 4 - Influence of base diffusion length on open-circuit 
voltage. 
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Figure 5. -Variation of device saturation current and its 
components with primary diffusion time. 
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Figure 6. - Correlation between voltage and current for 
selected wavelengths. 
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